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Abstract

A new approach to identification of modal damping ratios from free vibration response of a linear structure with viscous

damping is proposed in this paper. For a single degree of freedom (dof) system, the formulated relations among areas

forming from time history of response are used to determine the damping ratio for the free decay vibration. Comparing

with traditional logarithmic-decrement method, the approach in this paper has advantages such as stronger anti-noise

ability, higher precision, better stability and convenience. For a multi-dof system, the free vibration response measured at

one point on the structure is expressed in an analytical form at first, and then multiplied by eat. Giving the initial value, a

can be obtained by Newton’s dichotomy or golden section method while the product of the response and eat has equal

vibration amplitudes after a period of time. Accordingly, the damping ratio for this mode can be determined. Repeating

the above-mentioned process, all damping ratios for different modes can be obtained in the same way. Results of digital

simulations and field tests for the Dongting Lake Cable-stayed Bridge in Yueyang show that the approach presented in this

paper is effective and practical.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In the advanced research areas of structural dynamics such as fault diagnosis, real-time monitoring of
vibration, response prediction, load identification and so on, it is very important to build accurate dynamics
models. Because of the complexity of large engineering structures and the existence of measurement error, the
dynamic characteristics of systems obtained by the theoretical calculation and practical measurement may be
quite different. When carrying out the calculation of structural dynamics, modal damping is often used and
considered as proportional damping for the purpose of simplicity. Even though, the selection of proportional
coefficient still depends on more engineering experience. Modal damping ratios of a structure can be identified
or estimated from tested data by the methods of parameter identification. There are many methods to identify
modal damping ratios both in the time domain and in the frequency domain. Methods of the time domain
include logarithmic-decrement method, ITD method [1], STD method [2], random decrement technique [3],
weighted response-integral method [4], etc. Methods of the frequency domain include half-power bandwidth
method, peak picking method, admittance circle method [5], etc. Further possibilities include wavelet
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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transform [6,7] and EMD-HT method [8]. In comparison with the other parameters like natural frequencies or
mode shape, the damping ratios have lower identification accuracy, especially when the tested data is
contaminated by noise. As a result, how to improve the identification accuracy of damping ratio is an active
research in structural dynamics.

To improve the identification accuracy of damping ratios, Refs. [9,10] presented the solutions for
damping matrix identification to be independent of mass and stiffness matrices, which performed in the
frequency domain and needed to test the frequency response function. For a large and complex structure
like a bridge, the acquisition of the frequency response function is very difficult because the exciting force
is inconvenient to be measured in this case. Therefore, the purpose of this paper is to propose a new approach
to identification of modal ratios from free vibration response (displacement, velocity or acceleration)
measured at one point on the structure in the time domain. This approach needs not to test the input data
and is suitable for single degree of freedom (dof) systems and multi-dof systems. For the measurement
noise, ITD method and STD method take the noise modes into consideration and have to characterize
the useless noise, consequently lead to the increase of computation time. The approach in this paper
determines the damping ratios using the formulated relation among areas forming from time history of
response. In practical application, all of areas are obtained by summating trapezia forming from sampling
response data. Although noise may have a serious effect on discrete sampling data, it has much less effect on
the summation of the total response, especially when the noise is Gaussian white noise with zero mean as the
positives and the negatives counteract. So, this approach has stronger anti-noise ability, higher precision and
better stability.

For a multi-dof system, the free vibration response x(t) exponentially decays with time and gradually
reaches zero. If x(t) is multiplied by exioni t, xðtÞexionit would have equal vibration amplitudes after a period of
time. In fact, xioni is unknown at first, but it can be obtained by search algorithm. Then oni can be determined
through frequency spectrum analysis on xðtÞexionit and xi can be determined accordingly.

To illustrate this idea, digital simulations and field tests are presented in this paper.
2. Theoretical background

2.1. Single dof system

Consider a single dof linear and viscous system

€xþ 2xon _xþ o2
nx ¼ 0, (1)

where x, _x and €x are displacement, velocity and acceleration, respectively, x is damping ratio, and on is natural
frequency. For under damped case, the free decay vibration response of this system can be written as

xðtÞ ¼ Ae�xont sinðodtþ jÞ (2)

in which od ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
is damped natural frequency, and A and j are constants determined by initial

conditions. The logarithmic-decrement ratio

d ¼ ln
A1

Anþ1
¼ ln

Ae�xonti

Ae�xonðtiþnTd Þ
¼ xonTdn ¼

2npxffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p , (3)

where Td ¼ 2p/od is the damped period corresponding to the damped natural frequency, and n is the number
of selected periods. The damping ratio can be obtained through Eq. (3).

There exists in two problems for the logarithmic-decrement method. The first one is that peak values A1 and
An are sampling values, and they are not sure of being equal to the actual maximum values. The second one is
that this method is easily contaminated by noise. If x(t) is contaminated, the peak values A1, An might have
great local changes which could influence the identification result. Now it is improved as follows.

The time history of response x(t) is shown in Fig. 1. Suppose the response x(t) and time t intersect at points
t1, t2,y, t2N+1, and absolute areas enclosed between x(t) and t are S1,S2,y,S2N, respectively. If the
intersections do not exactly correspond to the sampling points, t1, t2,y, t2N+1 are determined by linear
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Fig. 1. Free vibration response of the system.
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interpolation. Then one gets

S1 ¼

Z t1þ
Td

2

t1

xðtÞ
�� ��dt ¼

Z Td

2

0

xðtþ t1Þ
�� ��dt ¼ Ae�xont1

Z Td

2

0

e�xont sinðod tþ jþ od t1Þ
�� ��dt, (4)

S2 ¼

Z t1þTd

t1þ
Td

2

jxðtÞjdt ¼

Z Td

2

0

x tþ t1 þ
Td

2

� �����
����dt ¼ Ae�xont1e�xon

Td

2

Z Td

2

0

e�xont sinðodtþ jþ odt1Þ
�� ��dt. (5)

It is easily obtained

S2 ¼ S1e
�xon

Td

2 . (6)

One can also know in the same way

S2N ¼ S2N�1e
�xon

Td

2 . (7)

So

S1 þ S3 þ � � � þ S2N�1

S2 þ S4 þ � � � þ S2N

¼
S1 þ S3 þ � � � þ S2N�1

ðS1 þ S3 þ � � � þ S2N�1Þe
�xon

Td

2

¼ exon
Td

2 ¼ epx
� ffiffiffiffiffiffiffiffi

1�x2
p

. (8)

Taking natural logarithm to the base e to both sides of Eq. (8), the damping ratio is given by

x ¼ 1

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

p
E

� �2r
, (9)

where E ¼ lnð
P

S2k�1=
P

S2kÞ, i.e., natural logarithm to the base e to the ratio of area summation of the N

odd subscripts to area summation of the N even subscripts. N can be arbitrarily determined. Another form can
also be expressed as

S1 þ S2 þ � � � þ SN

SNþ1 þ SNþ2 þ � � � þ S2N

¼
S1 þ S2 þ � � � þ SN

ðS1 þ S2 þ � � � þ SNÞe�xonnTd
¼ exonnTd ¼ e2npx

� ffiffiffiffiffiffiffiffi
1�x2
p

(10)

the damping ratio is given by

x ¼ 1

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2n

p
E

� �2r
, (11)
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where E ¼ lnð
P

Sk=
P

SkþN Þ, i.e., natural logarithm to the base e to the ratio of area summation of the
former N subscripts to area summation of the latter N subscripts.

2.2. Multi-dof system

An N-dof vibration system is governed by

½M�f €xg þ ½C�f _xg þ ½K �fxg ¼ f0g, (12)

in which ½M�; ½C�; ½K � 2 RN�N are mass, damping and stiffness matrices, respectively, and f €xg; f _xg; fxg 2 RN

are acceleration, velocity and displacement vectors, respectively.
Response measured at one point on the system of Eq. (12) is expressed as

xðtÞ ¼
XN

i¼1

Aie
�xioni t sinðoditþ jiÞ, (13)

in which xi is the ith damping ratio, oni is the ith natural frequency, odi is the ith damped natural frequency,
and Ai, ji are constants determined by initial conditions.

For simplification of statement, suppose x1on1px2on2p � � �pxNonN . Multiplying Eq. (13) by eat results in

yðtÞ ¼ xðtÞeat ¼
XN

i¼1

Aie
�ðxioni�aÞt sinðoditþ jiÞ. (14)

Now three cases will be discussed as follows:
(1)
 If a4x1on1, then eða�x1on1Þt is divergent. The absolute areas forming from t and y(t) will become larger and
larger after a period of time, i.e., the latter area is larger than the former area.
(2)
 If a ¼ x1on1, then eða�x1on1Þt ¼ 1, y(t) can be expressed as

yðtÞ ¼
XN

i¼2

Aie
�ðxioni�aÞt sinðoditþ jiÞ þ A1 sinðod1tþ j1Þ: (15)

It is obvious that y(t) will vibrate in equal amplitudes A1 with frequency od1 if the time interval is long
enough. Determining A1 and od1, the damping ratio x1 is given by

x1 ¼
a

on1
¼

a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x21

q
od1

. (16)

So

x1 ¼ 1

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

od1

a

� �2r
. (17)
(3)
 If aox1on1, then eða�x1on1Þt decays with time, and y(t) decays as well. The absolute areas forming from t

and y(t) will become smaller and smaller after a period of time, i.e., the latter area is smaller than the
former area.
Normally, a is not directly available to make y(t) vibrate in equal amplitudes, but it can be determined by
search algorithm. Giving the initial value, for example, letting aA(0, 1), calculate the ratio changes of areas at
a ¼ 0, 0.5, 1 after enough long time interval, a ¼ x1on1 can be obtained by Newton’s dichotomy or golden
section method, and x1, on1 and A1 can be determined. Theoretically, the product of component
A1 sin(od1t+j1) in Eq. (15) and e�at is the contribution of the mode with damping ratio x1 to response
x(t). Subtracting A1e

�at sin(od1t+j1) from x(t) and repeating above-mentioned process, x2;on2;A2; . . . ; xN ,
onN ;AN can be obtained correspondingly.
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Single dof system is the special case of multi-dof system. Therefore, its damping ratio x can also be gotten in
the same way.
3. Digital simulations and field tests

3.1. Simulation of single dof system

The single dof system is given by

€xþ 0:5 _xþ 25x ¼ 0. (18)

The response is represented by

xðtÞ ¼ e�0:25t sinðodtþ jÞ, (19)

where od ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
, j ¼ arctan 10. The free decay response in Eq. (19) and the response contaminated by

Gaussian white noise with zero mean are shown in Figs. 2 and3, respectively. Identification results obtained by
traditional logarithmic-decrement method and approach in this paper are given in Table 1.

All areas are calculated by summating trapezium. Sampling frequency is 200Hz. Two cases are considered,
i.e., E ¼ S1/S2 and E ¼ (S1+S2)/(S3+S4), and identified results are almost the same.

From the results, it can be seen that both logarithmic-decrement method and this approach can obtain
satisfactory damping ratios if there is no noise contamination. However, when the free response is
contaminated by Gaussian white noise, the relative errors of damping ratio obtained by traditional
logarithmic-decrement method increase much more than those obtained by approach in this paper as the
noise-to-signal ratios increase. Filtering the contaminated response through low-pass filter, the precision of
logarithmic-decrement method can be greatly improved, but it is unsteady.
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Fig. 2. Free decay response.
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Fig. 3. Free response contaminated by Gaussian white noise with zero mean.
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Table 1

Comparison of damping ratio identified by traditional logarithmic-decrement method and approach in this paper

Noise-to-

signal ratio

Response without filtering Response with low-pass filtering

Approach in

this paper

(%)

Relative

error (%)

Logarithmic-

decrement

method (%)

Relative

error (%)

Approach in

this paper

(%)

Relative

error (%)

Logarithmic-

decrement

method (%)

Relative

error (%)

0 5.0 0 5.0 0 5.0 0 5.0 0

5% 4.99 0.2 4.31 13.8 4.99 0.1 4.88 2.5

10% 4.98 0.4 2.73 45.4 4.99 0.19 4.66 6.8

20% 4.95 1.0 1.24 75.4 4.98 0.36 4.5 10.1

Table 2

Comparison of each order damping ratio identified by approach in this paper, ITD method and STD method

Noise-to-signal ratio 0 5%

x1 (relative
error (%))

x2 (relative
error (%))

x3 (relative
error (%))

x1 (relative
error (%))

x2 (relative
error (%))

x3 (relative
error (%))

Approach in this paper (%) 5.01(0.2) 3.75(0) 1.0(0) 4.97(0.6) 3.77(0.53) 1.02(2)

ITD method (%) 5.02(0.4) 3.72(0.8) 1.05(5) 5.15(3) 3.90(4) 1.30(30)

STD method (%) 5.01(0.2) 3.73(0.53) 1.0(0) 5.10(2) 3.82(1.87) 1.12(12)

A11

Fig. 4. The elevation view of the Dongting Lake Bridge.
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3.2. Simulation of multi-dof system

Response of a three-dof vibration system is assumed as

xðtÞ ¼ e�0:25t sinð5tþ j1Þ þ 1:5e�0:3t sin 8tþ 2:0e�0:1t sin 10t, (20)

where j1 ¼ arctan 5, x1 ¼ 5%; x2 ¼ 3:75%; x3 ¼ 1:0%. Identification results of three modal damping ratios
obtained by approach in this paper, ITD method and STD method are listed in Table 2.

All areas are calculated by summating trapezia. Sampling frequency is 200Hz. When calculating areas
forming from t and xðtÞeat, it starts at moment t ¼ 40 s in order to allow the response to decay sufficiently. 5%
in Table 2 means noise-to-signal ratio level.

3.3. Field tests and results analysis

The field tests are carried out on the Dongting Lake Cable-stayed Bridge (DLB), which locates in Yueyang
city, Hunan province of China. The DLB is a prestressed concrete cable-stayed bridge with three-pylon, the
main 310m span, and four-lane highway deck. It opened to traffic in October 2000. A total of 111 pairs of
cables are stayed on the bridge. The middle pylon is 100m high, and the other two side pylons are equally 75m
high from the deck. The elevation view of the bridge is shown in Fig. 4.



ARTICLE IN PRESS
F.-L. Huang et al. / Journal of Sound and Vibration 303 (2007) 144–153150
According to actual situation of cable vibrations and theoretical analysis, cable A11 is selected as the
experimental cable. Standard of the cable A11 is PES7-163. This cable has following geometric parameters:
114.719m length, 68.944m height from the deck, 51.8 kg weight per unit length, 6.272� 10�3m2 cross-
sectional area, 3.095� 106N dead loading tension and 2.0� 1011 Pa elastic modulus.

Experimental devices consist of two parts: the supporting system is used to support the cable-MR-damper
system on the deck, and the excitation system is used to vibrate the cable. The supporting system is fixed
on the deck by eight foundation bolts. In order to verify the effectiveness of cable vibration mitigation, the
cable-MR-damper system is designed to be separable. The excitation system is composed of an electric motor,
a steel cable, a load cell, a frequency converter, a reduction gear, a trigger and a fastener. Layout of
experimental devices is shown in Fig. 5. Other experimental equipment includes two model RD-1005 MR
dampers, four model CA-YD piezoelectric accelerometers, one model DH5938 vibration analysis and
processing system, one voltage regulator, and a portable computer are used to measure the acceleration
responses of the cable A11.

In the system of cables with MR dampers, cables occupy dominate status and have viscous damping.
Therefore, it is basically reasonable to assume the cable-MR-damper system is viscous system although MR
damper itself has characteristic of non-viscous damping.

Cable A11 was excited in sinusoid by the electric motor before and after MR dampers installed. The
excitation frequencies were adjusted to near the first three natural frequencies of cable A11 obtained by
ANSYS programs. After stabilization, unloading excitation forces through the trigger enabled the cable or the
cable-MR-damper system to vibrate in the form of free decay. The voltage levels applied on the MR dampers
would be changed to 0, 0.25, 0.5, 1.0, 2.0, 4.0, 6.0, 8.0, 10.0V, respectively. The acceleration responses from
accelerometers were amplified and sampled by DH5936 vibration analysis and processing system. The
sampling frequency was set as 500Hz. Recording time for each sample was about 400 s. Acceleration
responses of cable A11 with and without MR dampers would be contrasted. The first four theoretical and
measured natural frequencies of cable A11 are listed in Table 3.

It can be seen from Table 3 that measured natural frequencies have good agreements with theoretical
ones. Tests under different excitation frequencies for the cable A11 with MR dampers under different
voltage levels and without MR dampers were performed on the DLB. Typically free vibration responses
of the cable A11 with and without MR dampers are shown in Figs. 6 and 7, respectively. Obviously, the
equivalent modal damping ratio of the cable-MR-damper system is greatly larger than that of the
cable itself. Based on the approach to identification of damping ratio presented in this paper, and by
2 MR dampers

2.524m

Deck

11.504m

Electric  motor

Trigger

Load  cell

2  accelerometers

Cable  A11

6.316m

Frequency  converter

Supporting  system

Cable  A11

MR damper

Supporting  
system

Fig. 5. Layout of experimental devices.

Table 3

The first four theoretical and measured natural frequencies of cable A11 (Hz)

Mode 1 2 3 4

Theoretical values 1.0963 2.1925 3.2888 4.3851

Measured values 1.0986 2.1973 3.2959 4.3945
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using MATLAB as a platform, the programs were developed to analyze measured data. The identified modal
damping ratios for the cable itself and cable-MR-damper system under different voltage levels are shown in
Fig. 8 and Table 4.
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Table 4

The identified modal damping ratios for the cable itself and cable-MR-damper system under different voltage levels by approach in this

paper and approach in Ref. [7]

Cable A11 modes Without dampers Damping ratios (%)

With dampers (voltage levels)

0 0.5V 1V 2V 4V 8V 12V 16V 20V

1st

Approach in this paper (%) 0.19 0.48 0.87 0.73 0.60 0.63 0.52 0.57 0.59 0.62

Approach in Ref. [7] (%) 0.19 0.47 0.86 0.75 0.61 0.63 0.50 0.58 0.61 0.61

2nd

Approach in this paper (%) 0.21 0.49 0.57 0.74 0.93 0.51 0.46 0.48 0.50 0.53

Approach in Ref. [7] (%) 0.21 0.52 0.59 0.77 0.95 0.51 0.47 0.48 0.53 0.50

3rd

Approach in this paper (%) 0.12 0.58 0.54 0.73 0.79 0.57 0.50 0.46 0.43 0.47

Approach in Ref. [7] (%) 0.11 0.57 0.51 0.73 0.81 0.55 0.49 0.46 0.45 0.44
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The first three modal damping ratios of the cable A11 itself are 0.19%, 0.21% and 0.12%, and the first three
optimal equivalent modal damping ratios of the cable A11 incorporated with MR dampers are 0.87%, 0.93%
and 0.79%, respectively. The latter increases about 4–7 times as comparing with the former. Even no power
applied to MR dampers, the first three equivalent modal damping ratios increases about 2–4 times as
comparing with the former. In Fig. 8, it is also displayed that the first three modal damping ratios get the
optimal values when voltage levels reach 0.25, 1.0, 1.0V, respectively.

4. Conclusions and discussion

A new approach to identification of modal damping ratios from free vibration response of a structure is
presented in this paper. The approach is suitable for both single dof systems and multi-dof systems. Modal
damping ratios are obtained by using the formulated relations among areas forming from time history of free
response. In practical, all areas are obtained from response by numerical integration, which may cause slight
error theoretically as areas forming from time history of response are replaced by summating trapezium.
Though noise has a serious effect on discrete sampled data in local part, it has much less effect on areas
because integral calculations can cancel the positive and the negative out for the response signals
countermined by noise, especially by zero-mean Gaussian white noise. Therefore, compared with traditional
logarithmic-decrement method, the approach in this paper has stronger anti-noise ability, higher precision
better stability, much convenience and practicality. Results of digital simulations and field tests demonstrate
that it is successful and effective.

Compared with the Wavelet based methods in Refs. [6,7], the presented method is simpler, more convenient
and more practical.

It should be pointed out that the measured responses of the DLB include the component contributed by
random wind, earth pulse and deck vibration. For limitation of the space and complexity of the problem, it is
not further discussed in the paper.

When calculating areas, if there is no noise contamination, sampling frequency has no other requirement
except satisfying the Sampling theory, and if there is noise, sampling frequency must be increased because low
sampling frequency is disadvantageous to eliminate the effect of noise. Generally, sampling frequency is
selected as 10 times that of the maximal frequency.

Damping ratios are identified from responses measured at one point on the structure in this paper. If there
are enough responses measured at more points, then all modal parameters such as damping ratios, natural
frequencies and modal shapes could be identified.
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